Random switching near bifurcations
نویسندگان
چکیده
منابع مشابه
Interacting Bifurcations in Switching Systems
Abstract—We study a class of switching systems whose dynamics are characterized by an inner switching feedback loop and an outer continuous control loop. The loops have two widely separated time scales, performing fast-scale and slow-scale dynamics accordingly. Treating the two time scales separately, the stability of the systems can be studied, with results focusing on fast-scale bifurcation a...
متن کاملA Remark on heteroclinic bifurcations Near Steady State/Pitchfork bifurcations
We consider a bifurcation that occurs in some two-dimensional vector fields, namely a codimension-one bifurcation in which there is simultaneously the creation of a pair of equilibria via a steady state bifurcation and the destruction of a large amplitude periodic orbit. We show that this phenomenon may occur in an unfolding of the saddle-node/pitchfork normal form equations, although not near ...
متن کاملJakobson’s Theorem near saddle-node bifurcations
We discuss one parameter families of unimodal maps, with negative Schwarzian derivative, unfolding a saddle-node bifurcation. It was previously shown that for a parameter set of positive Lebesgue density at the bifurcation, the maps possess attracting periodic orbits of high period. We show that there is also a parameter set of positive density at the bifurcation, for which the maps exhibit abs...
متن کاملBifurcations of Relaxation oscillations Near Folded saddles
Relaxation oscillations are periodic orbits of multiple time scale dynamical systems that contain both slow and fast segments. The slow-fast decomposition of these orbits is defined in the singular limit. Geometric methods in singular perturbation theory classify degeneracies of these decompositions that occur in generic one parameter families of relaxation oscillations. This paper investigates...
متن کاملHopf bifurcations for Near-Hamiltonian Systems
In this paper, we consider bifurcation of limit cycles in near-Hamiltonian systems. A new method is developed to study the analytical property of the Melnikov function near the origin for such systems. Based on the new method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Moreover, we consider the case that the Hamiltonian ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Dynamics
سال: 2019
ISSN: 0219-4937,1793-6799
DOI: 10.1142/s0219493720500082